Research
Low-Energy Neurofeedback System (LENS):
Low-energy neurofeedback system (LENS): A study of 100 patient clinical outcomes, with a comparison to changes in the EEG — Larsen, S., Harrington, K., & Hicks, S. (2006). Journal of Neurotherapy, 10(2–3), 59–77.
Studies using electrical stimulation, neuroimaging aim for new insights on TBI, PTSD — Richman, M. (2018, May 10). U.S. Department of Veterans Affairs.
The effectiveness of microcurrent neurofeedback on depression, anxiety, post-traumatic stress disorder, and quality of life — Duke, G., Yotter, C. N., Sharifian, B., & Petersen, S. (2024). Journal of the American Association of Nurse Practitioners, 36(2), 100–109.
Biofeedback and neurofeedback guidance (CCN provider resource) — U.S. Department of Veterans Affairs. (2024).
LENS is one of 4 neurofeedback systems approved by the VA for veterans:
Regulatory Note: LENS is marketed in the U.S. under the FDA’s biofeedback device classification (21 CFR §882.5050), a Class II category that is 510(k)-exempt when used for relaxation training and muscle reeducation. It is not cleared or approved to diagnose, treat, cure, or prevent disease. eCFR+1
The healing power of neurofeedback: The revolutionary LENS technique for restoring optimal brain function — Larsen, S. (2006). Healing Arts Press.
The low energy neurofeedback system (LENS) — Hammond, C. (2016). University of Utah Press / Routledge.
LENS neurofeedback treatment of anger: Preliminary reports — Hammond, D. C. (2010). Journal of Neurotherapy, 14(3), 162–169.
Can LENS neurofeedback treat anosmia resulting from a head injury? — Hammond, D. C. (2007). Journal of Neurotherapy, 11(2), 57–62.
The low energy neurofeedback system (LENS): Theory, background, and introduction — Ochs, L. (2006). Journal of Neurotherapy, 10(2–3), 5–39.
Traditional Neurofeedback:
Review and the possibility of decoded neurofeedback — Chiba, T., Kanazawa, T., Koizumi, A., Ide, K., Taschereau-Dumouchel, V., Boku, S., Hishimoto, A., Shirakawa, M., Sora, I., Lau, H., Yoneda, H., & Kawato, M. (2019). Frontiers in Human Neuroscience, 13, 233.
Neurofeedback for post-traumatic stress disorder: Systematic review and meta-analysis of clinical and neurophysiological outcomes — Askovic, M., Soh, N., Elhindi, J., & Harris, A. W. F. (2023). European Journal of Psychotraumatology, 14(2), 2257435.
Neurofeedback: A comprehensive review on system design, methodology, and clinical applications — Marzbani, H., Marateb, H. R., & Mansourian, M. (2016). Basic and Clinical Neuroscience, 7(2), 143–158.
Quantitative EEG and neurofeedback in children and adolescents: Anxiety disorders, depressive disorders, comorbid addiction and ADHD, and brain injury — Simkin, D. R., Thatcher, R. W., & Lubar, J. (2014). Child and Adolescent Psychiatric Clinics of North America, 23(3), 427–464.
A symphony in the brain: The evolution of neurofeedback — Robbins, J. (2000). Grove/Atlantic.
Sleep:
Sleep loss and circadian disruption in shift work: Health burden and management — Rajaratnam, S. M., Howard, M. E., & Grunstein, R. R. (2013). The Medical Journal of Australia, 199(8), S11–S15.
Sleep drives metabolite clearance from the adult brain — Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., O’Donnell, J., Christensen, D. J., Nicholson, C., Iliff, J. J., Takano, T., Deane, R., & Nedergaard, M. (2013). Science, 342(6156), 373–377.
The sleep-deprived human brain — Krause, A. J., Simon, E. B., Mander, B. A., Greer, S. M., Saletin, J. M., Goldstein-Piekarski, A. N., & Walker, M. P. (2017). Nature Reviews Neuroscience, 18(7), 404–418.
Sleep deprivation: Impact on cognitive performance — Alhola, P., & Polo-Kantola, P. (2007). Neuropsychiatric Disease and Treatment, 3(5), 553–567.
Marital quality and the marital bed: Examining the covariation between relationship quality and sleep — Troxel, W. M., Robles, T. F., Hall, M., & Buysse, D. J. (2007). Sleep Medicine Reviews, 11(5), 389–404.
Why We Sleep: Unlocking the Power of Sleep and Dreams — Walker, M. (2018). Scribner.
Risks from Not Getting Enough Sleep: Impaired Performance — National Institute for Occupational Safety and Health (NIOSH). (2010). Centers for Disease Control and Prevention.
Stress:
The health and economic burden of employee burnout to U.S. employers — Martinez, M. F., Rincón, L. M., & Segal, J. (2025). American Journal of Preventive Medicine. (Alt link: https://www.sciencedirect.com/science/article/abs/pii/S0749379725000236)
The effects of stress on working-memory-related prefrontal processing: An fNIRS study — Geißler, C. F., Frings, C., & Domes, G. (2025). Stress, 28(1).
Effects of acute stress on group decision-making: Taking stock and looking ahead — Mojzisch, A., Bahr, J.-H., Roswag, M., & Häusser, J. A. (2025). Gruppe. Interaktion. Organisation. Zeitschrift für angewandte Organisationspsychologie.
Stress signalling pathways that impair prefrontal cortex structure and function — Arnsten, A. F. (2009). Nature Reviews Neuroscience, 10(6), 410–422.
Stress- and allostasis-induced brain plasticity — McEwen, B. S., & Gianaros, P. J. (2011). Annual Review of Medicine, 62, 431–445.
Time-dependent effects of acute stress on working memory performance: A systematic review and hypothesis — Geißler, C. F., Friehs, M. A., Frings, C., & Domes, G. (2023). Psychoneuroendocrinology, 148, 105998.
Stress, working memory, and academic performance — Almarzouki, A. F. (2024). Stress, 27(4).
Secondary traumatic stress and burnout in healthcare professionals: A systematic review and meta-analysis — Ulaş, S., & Seçer, İ. (2025). Scientific Reports, 15, Article 34680.